Tumors of the Nervous System

GENERAL CHARACTERISTICS

Incidence

- Primary tumors of the CNS – 9% of all 1st tumors
- CNS tumors – 1.2% of all deaths
- Glioma group tumors – 45% of all intracranial tumors in all age groups
- Children – CNS tumors 2nd most frequent form of malignancy (after hematological and lymphoreticular)
- 15,000 newly diagnosed brain tumors each year
- 5 year survival – 25%

Sites

- Children – 70% INFRAtentorial
- Adults – 70% SUPRAtentorial
- Most common 1st malignant intracerebral tumor in adults – glioblastoma multiforme (SUPRATENTORIAL)
- Most common MALIGNANT tumor in children – medulloblastoma (CEREBELLAR)
- Most common BENIGN tumor in children – astrocytoma of the cerebellum – more frequent than the medulloblastoma
- Very rare – meninges and schwann cells (meningiomas and schwannomas) – usu. found in adults
- In adults, metastatic tumors (most frequently from the lung) account for 25-30% of all brain tumors

GROWTH AND SPREAD OF NEUROECTODERMAL TUMORS

Forms of Growth

- BY EXPANSION ONLY
 - good prognosis
 - ependymomas, choroid plexus papillomas
- BY EXPANSION AND INFILTRATION
 - oligodendrogliomas, many cerebellar astrocytomas, some glioblastomas
- MAINLY BY INFILTRATION
 - bad prognosis
 - glioblastomas, diffuse cerebral astrocytomas, medulloblastomas
 - gliomas are practically incurable because of their infiltrative growth pattern
 - 2nd structures of Scherer
 - indicate an underlying infiltrative tumor
 - can be subpial, perineuronal, or perivascular

Local spread of tumor across the pia

- frequently seen in the “benign” forms – cerebellar astrocytomas and optic nerve gliomas
- some gliomas invade the Virchow-Robin spaces and the leptomeninges as a local phenomenon

Spread of the tumor through the ependyma

- can lead to ventricular spread which leads to diffuse dissemination through the CSF pathways
- most common in midline cerebellar medulloblastomas
- less often in glioblastomas and oligodendrogliomas

Extraneural metastases

- rare
- often follows operation
Histological Typing of Brain Tumors

TUMORS OF THE MENINGES - MENIGIOMAS

Meningioma (Grade I)
- tumor of composed of or differentiating toward arachnoid cells of the meninges
- Peak incidence – age 45
- Most frequent site of origin – parasagittal region
- may begin within bone or invade bone – osteoblastic or osteolytic lesions
- most are encapsulated, but projections may occur
- typically slow growing tumors
- malignant, metastatic, and invasive meningiomas do occur
- HISTOLOGICAL HALLMARK – “meningiothelial whorl”
- MICROLOGICALLY Identified subtypes
 - Meningotheliomatous (syncitial)
 - consists of solid masses of cells with poor definition of the cell borders (syncitial)
 - Fibrous (Fibroblastic)
 - spindle-shaped cells resembling fibroblasts predominate
 - Transitional (mixed)
 - mixture of cells with syncitial appearance and fibroblastic features
 - tendency to form meningiothelial whorls, often around a capillary BV
 - some whorls contain hyaline cores or psammona bodies
 - Psammomatous
 - psammoma bodies are the predominant feature
 - most often spinal

Remember: Meningiomas do not invade brain

Atypical Meningioma (Grade II)
- erratic and unpredictable
- brain invasion permitted

Papillary (Grade II-III)
- rare form of meningioma with a papillary pattern
- often associated with malignancy

Anaplastic (malignant)(Grade III)
- any meningioma that displays anaplastic features

TUMORS OF THE CRANIAL AND SPINAL NERVES

Schwannoma (Grade I)
- benign tumor composed entirely of Schwann cells
- encapsulated, sometimes cystic
- Characteristic biphasic pattern
 1. dense cellular areas (Antoni A pattern) with nuclear palisading (Verocay bodies)
 2. more loosely structured areas (Antoni B)
- can occur on any spinal or cranial nerve
- MOST COMMON
 1. vestibular portion of the VIIIth nerve – gradual and progressive hearing loss
 2. dorsal roots of spinal nerves – low back pain
- develops on the periphery of the nerve; nerve fibers on outside
- Resection is curable, if feasible
Neurofibroma (Grade I)

- localized (solitary) or diffuse (plexiform) tumor consisting predominantly of Schwann Cells and fibroblasts and perineural cells with loosely arranged collagen fibers.
- develops from within the nerve
- Characteristic appearance
 - waxy small bundles of neoplastic cells in a myxoid matrix
 - nerve fibers may be in the tumor
 - No Antoni A or B
- Since it grows from within the nerve, resection is not possible without sacrificing the nerve
- 5-10% become malignant

TUMORS OF NEUROEPITHELIAL TISSUE (Astrocytic, Oligodendroglial, Mixed Gliomas, and Ependymal)

Astrocytic Tumors (fibrillary, diffuse)

Astrocytoma (Grade II)

- infiltrating tumor composed primarily of astrocytes
- Subtype
 - Gemistocytic
 - large, plump astrocytes w/ abundant cytoplasm (eosinophilic) and one or more, usually eccentric nuclei.
- HISTOLOGICAL CRITERIA FOR GRADING
 - slight hypercellularity
 - slight nuclear atypia
 - no vascular proliferation or necrosis

Anaplastic (malignant) Astrocytoma (Grade III)

- HISTOLOGICAL CRITERIA FOR GRADING
 - moderate hypercellularity
 - moderate nuclear atypia
 - vascular proliferation permitted
 - no necrosis
 - mitoses

Glioblastoma Multiforme (GBM) – (Grade IV)

- most frequent and malignant brain tumor (adults)
- mean survival – < 1 year
- most progress from lower grade astrocytomas (Grade II), they can arise de novo
- the 2° GBM arises in younger patients and has a better prognosis than the 1° GBM
- Most frequent genetic alteration – loss of heterozygosity on Chromosome 10 (80% of all cases)
- Most GBMs appear to have lost one entire copy of C – 10
- Different genetic alterations between 2° and 1°
 - 1° – EGFR amplification/overexpression
 - 2° – p53 mutations
- Variants: giant cell GBM, gliosarcoma
- HISTOLOGICAL CRITERIA FOR GRADING
 - vascular proliferation (not required)
 - necrosis with or without palisading (REQUIRED)
 - moderate to marked nuclear atypia
 - moderate to marked hypercellularity
 - mitoses
Grading of Astrocytomas
- some use grade I-IV
- some use three tier system (astrocytoma, anaplastic (malignant) astrocytoma, and glioblastoma)
- uses histological criteria mentioned above

Special Astrocytomas

Pilocytic (Grade I)
- biphasic
- contains: compact areas with fusiform astrocytes and Rosenthal fibers and loose microcystic areas with eosinophilic granular bodies and stellate astrocytes
- Most occur in: children or young adults in cerebellum, hypothalamic region and optic nerve

Subependymal giant cell astrocytoma (with or w/o tuberous sclerosis) (Grade I)
- young patients
- circumscribed intraventricular tumor that occludes the foramen of Monro

Oligodendroglial Tumors

Oligodendrogloma, low grade (Grade II)
- tumor composed primarily of oligodendroglia cells
- round, uniform in size nuclei, clear cytoplasm, well defined cytoplasmic membranes; “fried-egg”
- chicken wire partitioning with BV with varying degrees of endothelial hyperplasia is characteristic
- focal calcifications often found in or around tumor
- BAD prognosis – high cell density and necrosis
- slow growth over a period of years
- Prognosis better than astrocytomas of the same grade
- Anaplastic Oligodendrogliomas are better susceptible to chemotherapy than Astrocytic
- usu. have loss of 9p and 19q chromosomes
- Loss of 9p and CDKN2A deletions are associated with progression from grade II to grade III

Mixed Gliomas
- oligo-astrocytoma (Grade II)
- Anaplastic (malignant) oligo-astrocytoma (Grade III)

Ependymal neoplasms

Ependymal, low grade (Grade II)
- composed predominantly of ependymal cells
- form rosettes, canals, and most commonly, perivascular pseudorosettes
- Ependymal rosettes are diagnostic
- tumor typically projects from an ependymal surface
- slow growth over a period of years
- prognosis is better in adults than in children
- intraspinal have a better course than intra-cranial

Anaplastic (malignant) Ependymoma (Grade III)

Myxopapillary Ependymoma (Grade I)
- occurs virtually always in the region of the cauda equina and originates from the filum terminale or the conus medullaris
- ependymal cells arranged in a perivascular papillary pattern
- Perivascular and intercellular mucin deposition
- hemorrhages are frequent
Subependymoma
- tumor composed of nests of uniform ependymal cells in a stroma of dense acellular fibrillary processes
- frequently, present as small asymptomatic nodules
- others may present as small or large masses projecting into a ventricle, especially the 4th ventricle
- typically slow growing

CHOROID PLEXUS TUMORS

Choroid Plexus Papilloma (grade I) and carcinoma (grade III-IV)
- papillary tumor composed of a single layer of cells covering a delicate vascular connective tissue core
- sometimes heavily calcified
- mitoses are rare
- malignant transformation – choroid plexus carcinoma – children (almost non-existent in adults)
- Pre-albumin (transthyretin) is present in choroid plexus tumors

Colloid cyst of the 3rd ventricle
- NOT A CHOROID PLEXUS TUMOR
- mucus filled, epithelial-lined cyst occuring in the region of the 3rd ventricle in the region of the foramen of Monro, near the choroid plexus
- benign
- good prognosis if found early and surgically removed
- Produces classic symptoms of headache, sudden transient paralysis of lower extremities, incontinence, personality changes, and occasionally dementia
- affects mainly young to middle age adults

NEURONAL TUMORS

Gangliocytoma (Grade I) and Ganglioglioma (Grade I-II)
- tumor composed mainly of mature ganglion cells and glial cells
- non-neoplastic glial cells- gangliocytoma
- neoplastic glial cells- ganglioglioma
- mesenchymal stroma may be present
- often calcified and cystic
- slow growing tumors with benign potential
- malignancy may occur through transformation of glial elements
- Signs: seizures, ICP symptoms

Central Neurocytoma
- recently delineated discrete intraventricular tumor in the area of the foramen of Monro
- obstructs the flow of CSF
- ICP signs and symptoms
- looks like an oligodendroglioma
- young to middle age adults

Other Defined mixed tumor entities

Dysembryoplastic Neuroepithelial Tumor (Grade I)
- exclusive symptom: partial complex seizure
- quasi-hamartomatous, intracortical multinodular mass composed of glioneuronal and other regions
- characteristic finding: mucoid background and “floating neurons”
EMBRYONAL TUMORS

Medulloblastoma (Grade IV)
- most frequent malignant tumor in children
- composed of small, poorly differentiated cells with ill-defined cytoplasmic processes
- tendency to form Homer-Wright rosettes
- differentiation into glial or neuronal elements may occur most characteristically in the midline of the cerebellum and in the roof of the 4th ventricle in children
- diffuse spread over the cerebellar folia often occurs early
- radiosensitive initially, but have a tendency to implant along the CSF pathways
- distant extraneural metastases occur infrequently
- member of the PNET (Primitive neuroepithelial tumors) – undifferentiated tumors

TUMORS OF THE PINEAL REGION

Germinoma
- most frequent tumor in the pineal region
- biphasic
 - areas composed of large, primitive spheroidal cells
 - and stromal areas with a prominent lymphoid cell component
- indistinguishable form testicular seminoma and the ovarian dysgerminoma
- Radiosensitive
- Other germ cell tumors in the pineal region: embryonal carcinoma, yolk sac tumor, choriocarcinoma, and teratoma

Pineocytoma (Grade III)
- uncommon tumor composed of pineal cells
- polar processes radiate towards the vascular stroma with club-like expansions at their tips
- Malignant tumor
- behaves as benign when it exhibits neuronal differentiation
- “pineocytomatous rosettes” common

Pineoblastoma (Grade IV)
- rare, highly cellular pineal tumor
- consists of small, poorly differentiated cells (PNET cells)
- always a malignant tumor

Astrocytic tumors
- benign and malignant astrocytic tumors may occur in the pineal gland

TUMORS OF UNCERTAIN HISTIOGENESIS

Hemangioblastoma
- cystic, capillary-rich neoplasm containing variably lipidized stromal cells
- occurs either sporadically – 70% or occurs in association with the von Hippel-Lindau disease –30%
- Prototypic hemangioblastoma – cystic cerebellar mass with a contrast-enhancing mural nodule
CRANIOPHARYNGIOMA

- tumor considered by some people to originate from remnants of the craniopharyngeal duct (Rathke’s pouch)
- calcified cystic suprasella mass filled with a dark brown fluid
- first two decades of life
- Histo: epithelial lobules exhibit peripheral palisading of nuclei abutting cyst-like spaces or connective tissue stroma and ‘dehisce’ to assume a stellate configuration
- Common features: calcification, wet keratin, ossification, and inflammatory reaction
- glial reactions and Rosenthal fibers in the vicinity
- Variants:
 - Adamantinomatous
 - papillary (no nuclear palisades, microcystic degeneration, calcification, and wet keratin; better prognosis)

PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA

- deep seated tumors
- solitary in healthy people
- multiple in immunocompromised patients
- most are B-cell lymphomas
- centered around arteries and angioinvasion are characteristic

METASTATIC TUMORS

- LOTS OF EDEMA!