Introduction to Neuropathology

- The CNS can only respond to injury in a limited # of ways
- Distribution of injury is different for each disease
 - **Remember that consequence is site dependent, not size dependent**
- Basic responses can be subcategorized according to the constituents of the CNS
 1. Neurons
 2. Glia
 - astrocytes
 - oligodendroglia
 - ependyma
 - microglia
 3. Meninges and their constituents
 4. Blood vessels and their constituents

BASIC RESPONSES TO INJURY OF CNS CONSTITUENTS

Neurons

- **Central chromatolysis**
 - Nissl substance and nucleus displaced to periphery of the neuronal cytoplasm
 - response to axonal transection or damage
 - result of axonal reaction
- **Eosinophilic neurons**
 - coagulative necrosis of neurons
 - results from hypoxic or ischemic injury
 - neurons – triangular, eosinophilic, loss of nuclear detail, cytoplasmic blebbing
- **Axonal spheroids**
 - occur as a result of membrane injury and axonal transection
 - axonal cytoplasm becomes dilated and engorged w/ eosinophilic granular material
- **Neuronoghagia**
 - Macs surrounding neuron; phagocytosis
- **Intraneuronal deposits**
 - lipofuscin
 - metabolic substrates
 - viral inclusions – eosinophilic bodies (Negri bodies) in cytoplasm – Rabies
 - byproducts of neurodegenerative disorders – Ex. neurofibrillary tangles of Alzheimer’s
- **Atrophy**
 - neuronal loss and accompanying astrogliosis
 - mild cell loss is hard to assess; Brain wt. Decreased

Glia (oligodendroglia, ependyma, astrocytes)

- **Astrocytes**
 - **astrogliosis**
 1. reactive response of astrocytes to many form of insult or injury
 2. proliferate and hypertrophy in response to almost any challenge to the CNS
 3. Hypertrophic astrocytes produce **GFAP (glial fibrillary acidic protein)** – makes them eosinophilic
 4. these cells are the scar tissue of the CNS
 5. can be due to normal aging
 - **Rosenthal fibers (MUST KNOW FOR BOARDS!!)**
 1. found in areas of brain with longstanding astrogliosis and edema
 2. Brightly eosinophilic due to GFAP
 3. located within astrocytic processes and consist of α-B-crystallin surrounded by GFAP
 4. serves as barrier function
 5. also found in Juvenile pilocytic astrocytomas and in the white matter of patients with Alexander’s disease.
- **Corpora amylacea**
 1. end feet of astrocytes
 2. predominate in a perivascular, subependymal, and subpial dist.
 3. glycogen or polyglucosan polymers
 4. basophilic, round, concentrically lamellated bodies

- **Alzheimer type 2 astrocytes**
 1. seen in hepatic encephalopathy and Wilson’s disease
 2. large vesicular nuclei which contain an eccentric nucleolus and no discernible cytoplasm by L.M.

- **Oligodendrocytes**
 - produce and maintain myelin in the white matter
 - develop viral inclusions in progressive multifocal leukoencephalopathy

- **Ependyma**
 - glia beneath the ependyma proliferate if the lining is destroyed or separated
 - the glial proliferation is termed **ependymal granulations**
 - ependyma can also be infected with CMV

- **Microglia**
 - CNS macrophages
 - bone-marrow derived
 - proliferate and cluster together (nodule formation) in response to injury

CEREBRAL EDEMA

- cerebral edema => increased intracranial pressure (ICP)
- most common causes of ICP is tumor, hematoma, and abscesses

REMEMBER!!!

- at some point the ICP increases to equal the perfusion pressure (PP) which results in Cerebral Blood flow (CBF) = 0.
- **CBF = PP – ICP**
- Never want ICP and PP the same.

<table>
<thead>
<tr>
<th>Intracranial pressure values</th>
<th>Autoregulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal < 15 mmHg</td>
<td>- compensation for ↓ perfusion by</td>
</tr>
<tr>
<td>Ischemia – 40 mmHg</td>
<td>arteriolar dilatation</td>
</tr>
<tr>
<td>No autoregulation – 60 mmHg</td>
<td>pCO₂ regulated</td>
</tr>
<tr>
<td>recommended to keep at 15-20 mmHg or below</td>
<td>results from hypoTN or ↑ ICP</td>
</tr>
</tbody>
</table>

- if significant reduction in CBF is prolonged, the brain tissue will become ischemic and undergo ‘intravitum autolysis’ with decomposition
- results in – diffuse gray discoloration, softening, swelling – “respirator brain”

Types of Cerebral Edema

Vasogenic edema

- results from increases vascular permeability
- results in deposition of plasma in white matter
- alteration in BBB results in vasogenic edema (remember the junctions between capillary endothelial cells)
- Histologically seen as: **VACUOLATION OF THE WHITE MATTER**
- Causes of vasogenic edema
 1. adjacent to a mass lesion (abscess, tumor, hematoma)
 2. infarction and ischemia
 3. trauma
 4. hemorrhage
 5. lead encephalopathy
 6. HTN encephalopathy
 7. Purulent meningitis
Cytotoxic edema
- results from damage to cell membrane
- swelling of endothelial, glial, and neuronal cells from influx of H₂O and Na into the cell cytoplasm
- Micro: swelling and vacuolation of the cytoplasm
- **PREDOMINATES IN THE GRAY MATTER**
- no alteration in permeability to plasma proteins
- no method of radiologic detection
- Associated with the following
 1. Hypoxia/ischemia
 2. hypoosmolality from H₂O intox.
 3. Reye’s syndrome

Interstitial edema
- results from too much CSF in the ventricles
- transudation of CSF out of ventricles past ependymal cells into surrounding **white matter**
- similar radiologically to vasogenic edema, except surrounds ventricles
- Results from severe hydrocephalus

Gross appearance of cerebral edema
- gyral flattening
- sulcal narrowing
- generalized softening, vascular congestion, and dusky discoloration

HYDROCEPHALUS
- Definition: enlargement of the ventricles with an associated increase in the volume of CSF.
- **CSF is produced at a rate of 20 mL/Hr or 500mL/day**
- Average volume of the ventricles and Subarachnoid Space (SAS) is 150 mL
- Assume CSF turnover 3 X per day
- CSF produced by choroid plexus⇒ foramen of L & M⇒ SAS ⇒ arachnoid villi ⇒ superior sagittal sinus
- any obstruction can produce hydrocephalus

Types of Hydrocephalus

Communicating Hydrocephalus
- obstruction is along the subarachnoid flow of CSF distal to the outlet of the foramen of L & M
- usually occurs at the level of the basal cistern
- Clinical disorders where this is seen:
 1. post-meningitis fibrosis of the SAS and AV
 2. organizing subarachnoid hemorrhage
 3. meningeal tumor
 4. arnold-chiari malformation
 5. **Non-obstructive communicating hydrocephalus**
 - choroid plexus papilloma
 - overproduction of CSF may result
 - arachnoid villi are saturated

Non-communicating hydrocephalus
- obstruction is intraventricular
- most common site
 1. foramen of Monro
 2. 4th ventricle
 3. cerebral aqueduct
- most commonly seen in:
 1. CNS tumors – by far most common
 2. Cysts
 3. Large cerebral artery aneurysms
 4. Hemorrhage
 5. malformations
Normal pressure Hydrocephalus
- syndrome of slow growing hydrocephalus
- triad of clinical features – dementia, urinary incontinence, and ataxia

Hydrocephalus ex vacuo (compensatory Hydrocephalus)
- occurs with atrophy and loss of brain substance
- compensatory expansion of the ventricular system

HERNIATIONS (4 TYPES)

Subfalcine or cingulate
- herniation of the cingulate gyrus beneath the falx cerebri
- results from mass lesion medially displacing the cerebral hemisphere
- Anterior cerebral arteries can be compressed

Transventorial (uncal)
- temporal lobe herniation over the free edge of the tentorium cerebelli
- herniated brain compressed the adjacent cerebral peduncle and posterior cerebral artery
- important implications
 1. cranial nerve III compression – ophthalmoplegia and pupillary dilatation
 2. ipsilateral hemiparesis – from cerebral peduncle compression against the tentorial edge
 3. Kernohan’s notch – hemorrhage and notching of the lateral peduncle
 4. midbrain compression by the uncus – altered consciousness
 5. infarction of the visual cortex and temporal hemispheres – due to compression of the PCA
 6. cerebral aqueduct compression
 7. Duret’s hemorrhages – tearing and shearing of the penetrating vessels of the midbrain and pons with these hemorrhages

Tonsillar
- cerebellar tonsils are caudally displaced into the foramen magnum
- due to pressurized supratentorial or posterior fossa contents
- Compression of the medulla- alteration in respiratory pattern leading to respiratory arrest

Fungus cerebri
- herniation of edematous brain through skull defect

REMEMBER!!!
- All brain-herniation syndromes are LIFE THREATENING
- Emergency measures taken to treat herniation
 1. airway maintenance
 2. respiratory and pressor support
 3. alleviation of pressure by:
 - osmotic agents (mannitol) and diuresis
 - surgical debulking
 - hyperventilation to decrease pCO₂ and constrict vasculature
 - drainage of CSF by shunt
 - fenestration of septum pellucidum to allow for lateral ventricle communication
 - “burr hole”