GENERAL ANESTHETICS

History of early anesthetics: Early drugs essentially provided "controlled suffocation" of the patient

• No longer used: Ether (explosion danger); chloroform (carcinogen, explosion danger)

• Still used: Nitrous oxide – see below

FOUR DESIRED COMPONENTS OF GENERAL ANESTHESIA

- 1. Unconsciousness
- 2. Amnesia Patient doesn't remember what happened just before, during, or right after surgery
- 3. Analgesia Lack of pain and autonomic stability (generally go hand-in-hand)
- a. Intact autonomic responses can indicate pain or discomfort via changes in heart rate, BP, etc. 4. *Muscle relaxation* Especially important for orthopedic and abdominal surgery

MAC (Minimum alveolar concentration) Dose altering	The concentration of anesthetic that prevents response to a standard painful stimulus in 50% of subjects ■ Expressed as % of inhaled anesthetic gas or vapor mixed in O2 ■ 1/MAC ≅ potency (smaller MAC = more potent anesthetic) Many factors, including but not limited to body temperature, pregnancy,
factors (MAC-	age, concomitant use of other anesthetics or adjuncts
altering factors)	
Blood/Lipid solubility &	<i>Blood solubility</i> : \uparrow blood solubility \rightarrow slower induction (onset of anesthesia)
pharmacokinetics	Linid solubility: \uparrow linid solubility \rightarrow faster induction (and longer duration)
	 Imagine the blood as a sponge for the inhaled anesthetic; the anesthetic travels from the lungs, saturates the blood, and finally gets to the brain to induce anesthesia High blood solubility is kind of like a super-absorbent sponge. Anesthetic will take a long time to saturate the "blood compartment" and "spill out" into the brain. With low blood solubility, lesser amounts of local anesthetic are needed to saturate the "blood compartment" before the anesthetic can "spill out" into the brain.
Mechanism(s) of	 Most probable explanation – Selective effects on specific
action are <i>unclear</i>	neurons, and more specifically some "potentiation" of GABA's neuronal inhibitory effects
	 Other potential explanations: [*] membrane fluidity membrane
	hyperpolarization
"Stages & Planes"	Outmoded "indicator" of adequacy or degree of general anesthesia (don't
of general anesthesia	memorize!!)
C	 Analgesia (w/o amnesia)
	 Excitement – Initially, inhibitory neuronal pathways are
	selectively put to sleep
	 Surgical anesthesia – Entire CNS depressed
	 Medullary depression, coma, death

INHALATION ANESTHETICS – GENERAL PRINCIPLES

IV INDUCTION DRUGS – GENERAL PRINCIPLES

- Good to excellent amnesia and unconsciousness (some give anterograde & retrograde amnesia)
- Virtually no analgesic or muscle relaxant activities
- Adjuncts for surgical anesthesia

MALIGNANT HYPERTHERMIA, HALOTHANE, AND SUCCINYLCHOLINE

- Results from interaction of any volatile liquid anesthetic and any neuromuscular blocker • Interaction of halothane and succinylcholine is most common
- Incidence & outcome: 1/50000 adult cases and 1/15000 peds cases; fatal 80% worldwide, 10-20% in U.S.
- Genetic predisposition: Family history and screening important
- Timeframe: Can occur intra-operatively or post-operatively several hours after drug exposure
- Pathophysiology: ↓ sarcoplasmic reticulum Ca uptake → titanic muscle contraction → profound, rapidly developing fever → K+ may leak out due to sarcolemma damage
 Leads to ventilatory impairment, hyperkalemia, arrhythmias, fever-induced seizures
- Management: Dantrolene sodium, oxygen, ↓ body temperature, supportive care and other drugs as needed

IV INDUCTION-MAINTENANCE DRUGS ARE SHORT-ACTING NARCOTICS → FENTANYL (PROTOTYPE)

- Similar to morphine but more potent
- Neuroleptic analgesia: Fentanyl combined with Droperidol (Tranquilizer)
- Can be given transdermally for chronic pain management
- High IV doses used as primary anesthetic for special procedures (e.g. cardiac surgery)

Class / prototype	Pharmacokinetics	Effects	Interactions and negative
Class / prototype INHALED VOLATILE LIQUID AGENTS - Halothane Others include Isoflurane (most	Pharmacokinetics& useMAC < 1%inspired air- VERY potentAdministration:Usually 0.5-1%Halothane + 60-70% NO + balanceO2	Effects Dose-dependent organ system effects CNS - Excellent amnesia, unconsciousness, analgesia - Cerebral vasodilation	Interactions and negative effects ↑ Risk of catecholamine- induced arrhythmias - ↑ Cardiac depression when used w/ b-blockers or Ca- channel blockers - ↑ Respiratory depression w/ narcotics - Need for intubation, ventilator
widely used in US), Enflurane , and Sevoflurane .	<i>Excretion</i> : 70-80% unchanged by lungs <i>Use</i> : Maintenance of surgical anesthesia	 → ↑ ICP (bad w/ stroke & cancer pts) CV-RENAL → HR, ↓ SV, ↓ CO, ↓ BP, ↓ urine output Potential (intrinsic) arrhythmogenicity; catecholamines can exaggerate this effect <i>Pulmonary</i>: Bronchodilator; reverses/prevents bronchospasm 	 Action of nondepolarizing (curare-like) NMJ blockers; prolonged muscle paralysis Malignant hyperthermia risk w/ succinylcholine (see p. 1) Acute OD/toxicity: CV depression
		SKELETAL MUSCLE - Relaxation insufficient for surgery - Malignant hyperthermia risk w/ succ. (See p. 1) Uterine: Relaxant Hepatic: "Rare" fulminant hepatotoxicity +/- necrosis	

INHALED GASES	MAC = 105% inspired air - Not potent	Gives modest analgesia, amnesia, unconsciousness, but no	Long-term/repeat exposure → Neurologic Sx that look like vitamin B12 deficiency
- Nitrous oxide	enough to get analgesia in 50% of pts, even at 100% NO w/ no O2!! Administration: See above	 Organ system effects Modest cardiovascular depression Little/no uterine effects 	Additional concerns about mutagenicity, carcinogenicity, and teratogenicity - Why OR ventilation is so good
	and recovery		

IV INDUCTION DRUGS

	- Ultra-short acting	- Cerebral blood flow
BARBITURATES	- Good to excellent amnesia and	metabolic rate ICP
Thiopental Thiamylal	unconsciousness w/ virtually no	(desirable)
Methohexital	analgesic or muscle relaxant	- Induction risks
	activities	- CV depression
		- Larvngosnasm + resp
		depression / annea
	Midazolem	- See under barbiturates)
BENZODIAZEPINES	- Used for induction and	- Diazenam Lorazenam –
Midazolem Diazenam	"conscious sedation"	limited use
Lorazenam	- Good sedation excellent	- Slow onset and long
Loruzopum	amnesia	actions
	- "Dissociative" anesthetic w/	Autonomic reflexes intact:
KETAMINE	excellent amnesia, analgesia,	often activates sympathetics
	unconsciousness	·····
	- Good for high risk pts	Potential psychomimetic
	(hypovolemic, hypotensive).	actions (PCP relative)
	children (eases induction).	
	asthmatics (bronchodilator), burn pts	
	(grafts, debridement)	
	Good for short procedures or pts at	Negligible CV or respiratory
EIOMIDAIE	risk for benzodiazepines	effects
	- Rapid onset, brief duration	
	- Excellent amnesia,	Potential myoclonus on
	unconsciousness	injection
	- No analgesia, muscle relaxation	5
PROPOEOI	- Chemically unrelated to others	Blunts autonomic-CV
FROFOFOL	- Rapid onset (<1min), short	responses to intubation
	duration (<10-15 min)	
	- Excellent amnesia,	
	unconsciousness	
	- Little/no analgesia, muscle	
	relaxation	
	- Popular for ambulatory surgery	

PHARMACOLOGY OF ANALGESICS

Narcotic Analgesics	Competitive agonists	Mixed agonists
• <i>Morphine</i> (prototype)	Naloxone	Nalorphine
•Levophanol	Naltrexone	Pentazocine
• Meperidine		 Nalbuphine
• Methadone		•Butorphanol
T . 11		

d agonists-antagonists

- Buprenorphine

• Methadone • Etorphine

• Codeine • Propoxyphene • Fentanyl	A.k.a partial agonists - Can activate same receptors as full agonists with smaller effects
RELATED SPECIFIC AGENTS •Apomorphine	- Antagonize the actions of the agonists (so that agonists give lesser effect)
• Dextromethorphan • Diphenoxylate • Loperamide	- Therapeutically, the least interesting

** Drugs to know...they are italicized on this table...not in the table \rightarrow Alfentanil and tramadol

- Narcotics act via receptor-mediated actions
 Opioid receptor types: m (named for morphine; tolerance inducing); k
 Tolerance, dependence, cross-tolerance, and cross-dependence More on this later

Characteristic morphine-like effects of narcotic analgesics

Analgesia	STRONGEST ANALGESICS KNOWN	
	Effective when pain comes from injury or inflammation; mechanism poorly understood	
	 Not effective for deafferentation pain 	
	Two components of morphine analgesia	
	 Reduction in pain sensation: Quantitatively reduces pain neurotransmission 	
	 Pre-emptive pain relief: Certain pain receptors uncovered only w/ inflammation; dripping morphine into surgical wound sites can prevent these receptors from getting activated 	
	 Reduction in the subjective distress produced by the pain sensation 	
Subjective effects	- Distinctive	
3	- Situationally dependent: Addicts get a "good sick," those w/ pain have	
	less pain, those w/o pain primarily experience side effects	
Overall sedation	<i>Occurs at all doses where pain relief occurs</i> : Includes \downarrow most behaviors, \downarrow	
	muscle tone, ↑ dozing, waxing/waning awareness, mental clouding, staring	
	into space; sedation \rightarrow severe depression \rightarrow coma w/ \uparrow dose	
	Effect on sleep: Unnatural form of sleep w/ no REM activity	
	 Species difs in char of effect: Primates & humans similar; cats 	
	& rodents get stimulant effects	
Respiratory	Strong respiratory depressants \rightarrow Dose-dependant reduction in medullary	
depression	sensation of CO2	
	 Occurs at standard clinical analgesic doses 	
	• Small margin of safety: Slight OD can lead to severe respiratory	
	depression, including apnea	
	• W/ morphine, 4x the analgesic dose is lethal for most people • Detentiation feature: Dehilitating conditions, administration of	
	 Fotentiation factors. Debintating conditions, administration of barbiturates or phenothiazines 	
Other CNS effects	- N/V: Common	
Other City cheets	- Vertigo (ambulatory nts)	
	- Minsis	
	- <i>Release of ADH</i> (get tolerance)	
	- Cough suppression	
	- Truncal rigidity (prob in OR)	
	- Convulsions w/ overdose or abuse (e.g meperidine, propoxyphene)	

Morphine-like effects of narcotic analgesics under ANS control

GI tract	<i>Constipation</i> : Occurs at \downarrow doses than used for pain relief; <i>dose-related</i>		
Grinaet	effect; no dev. of tolerance		
Smooth muscle	↑ <i>tone of biliary tract muscle</i> : ↑ pressure in bile ducts; sometimes get		
	biliary colic		
	■ Also see ↑ tone in bronchial smooth muscle, ureters, and urinary		
	bladder		
Cardiovascular	Dose-dependent; not usually a major problem		
	• Large doses given IV \rightarrow Hypotension via \downarrow peripheral vascular		
	resistance		
	• Standard clinical doses \rightarrow May produce orthostatic hypotension		
Neurohumors and	Rat facts \rightarrow Don't help us understand how narcotics act in CNS		
transmitters	 Inhibit ACTH release, Ach release from certain post-ganglionic 		
	parasymp fibers (similar effect in rodent CNS), and NE release		
	from some post-ganglionic symp fibers		
	 Release of adrenal epinephrine, histamine (asthma probs) 		
	 Increased synthesis and turnover of NE in rodent CNS 		

Pharmacokinetics of narcotic analgesics using morphine as prototype

Machaniam of	Identification of receptors in CNS
Mechanism of	Techniques: Use radiolabeled morphine stereoisomers: active
action	form binds receptors
	 Distribution: All over but esp in the head (in general) and the
	base of the brain (specific)
	Recentor effector mechanisms (opioid recentors). G protein-linked
	inhibition adenvlyl cyclase activation of K + channels suppression of
	voltage-gated Ca++ channels
	 Leads to blockade of NT release (e.g. glutamate, substance P)
	\rightarrow Block pain transmission
	Endogenous opiates: Identification of morphine-like substances
	 Pro-opiomelanocortin: Active form b-endorphin; mimics
	morphine better than any other endogenous opiate
	 Proenkephalin: Met-Enk or Leu-Enk domain
	 Prodynorphin: Dynorphin has slight preference for k receptor;
	may be k endogenous ligand
	Physical and pharmacological properties: Brief & small
	biological activity; only pathological activity/injury results in
	measurable (but small) levels of these compounds
	Modulation of pain experience not well-understood: Concept of
	"runner's high" pharmacologically shaky
Absorption,	Absorption: Poor from GI tract; relatively well subcutaneously or IM
distribution, and	Distribution: Onset of action (by subcutaneous route) related to lipid
fate	solubility
	• Controls access to central receptors; \uparrow solubility \rightarrow \uparrow absorption
	ELIMINATION/DETOXIFICATION
	Major path: Conjugation w/ glucuronic acid to morphine 6-
	glucuronide (more active than morphine) or morphine-3-
	glucuronide (inactive)
	 Minor nath: N-demethylation to inactive form
	 Duration of action: 4-6 hours
Pharmacologic	- Produce morphine-like CNS depression in single doses
principles of	- Induce <i>similar subjective effects</i> & reinforce self-administration behavior
morphine-like	- CNS depressant effects antagonized by naloxone (via competitive
narcotic analgesics	inhibition at recentor site)
har corre unungestes	- Upon repeated administration tolerance develops to CNS depressant
	effects

	- Cross-tolerance among drugs, regardless of chemical structure
	- Tolerance at level of receptor activation (not drug structure)
	- Upon repeated administration, drugs produce physical dependence of the
	morphine type
	- Cross-dependence among narcotic analgesics
	 An organism physically dependent on any one parcotic
	analgesic will have its dependence supported by another drug of
	this class
	 Abstinance sundrome produced by drug withdrowel can be
	- Abstinence syndrome produced by drug windrawar can be
	relieved by any compound of this class (similar to cross-
	tolerance)
	 W/physical dependence on any narcotic analgesic,
	administration of narcotic antagonist will precipitate an
	abstinence (withdrawal) syndrome, regardless of chemical
	structure of the drug
Characteristics of	- Origin of tolerance
morphine-type	 Metabolic: Narcotics metabolized more rapidly through induced
tolerance	n450 system
	 Cellular: Involves receptor recycling through cell (can see
	denendence w/o tolerance)
	 Learned: Patients w/ nain become tolerant more rapidly than
	those w/o pain
	Magnituda of toleranaa: Depends upon specific higlogical offect
	- Maginude of toterance. Depends upon specific biological effect
	- Little tolerance to consupation, considerable tolerance to
	- Augmented by † frequency, † dose of narcotic analgesic
Characteristics of	- Morphine abstinence syndrome (withdrawal syndrome): Wide set of
morphine-type	changes produced upon termination of repeated morphine administration
dependence	 Begins ~ 6 hrs after last dose: Sensation of illness similar to
	common cold
	 Restlessness,
	perspiration, abdom cramping
	Restless sleep, possible followed by insomnia
	 Dilated numils N/V diarrheal snasms of flexor muscles of the
	legs
	 Elevated body temperature heart rate systolic & diastolic blood
	- Elevated body temperature, neart rate, systeme & diastone blood
	 Deak severity: 26.49 hrs following last does: recovery requires
	- reak severuy. 50-46 his following last dose, recovery requires ~
	- Dependence w/ shorter[longer]-acting narcotics: Peak withdrawal
	severity sooner [delayed]

Other Morphine-like agonists

Lovornhanol	- Morphinan: Similar chemical structure to morphine
Levorphanoi	- Full spectrum of morphine-like effects w/ better oral-parenteral potency
	ratio
	- Dextromethorphan: Prototype non-narcotic antitussive
	- Dextro isomer of the codeine analogue of levorphanol
	- Suppresses cough by central mechanisms not well understood (and not
	that great, either)
	- In therapeutic doses, produces little sedation or GI disturbance
	- High doses produce respiratory depression
	- Actions are unaffected by narcotic antagonists; shows no cross-tolerance
	to morphine
	- Low risk with regard to abuse liability
Meperidine	- Shorter duration of action than morphine: Frequently used by dentists
	- Phenylpiperidines w/ full spectrum of morphine effects
	- Concurrent MAO inhibition produces a <i>severe state of CNS excitation</i> w/
	delirium, hyperpyrexia, and convulsions, or respiratory depression w/

	hypotension
	- N-demethylation produces a metabolite that has stronger excitant property
	- Dephenoxylate and Loperamide (Imodium): Meperidine congeners
	- Constipating agents used as antidiarrheal agents
	- Dinhenoxylate tablets contain an inactive amount of atronine
	Highly insoluble salts: Activate onjate recentors in GI tract but not
	- mgmy monute sans. Activate opiate receptors in or tract but not
	centrally
	- Antagonizable by narcotic antagonists
Methadone	- Structure / actions: Has pseudopiperidine ring; a m agonist <i>full morphine</i> -
	like actions
	- Well absorbed orally w/ slightly less sedative effect claimed by advocates
	- Use in treatment of heroin abuse
	- Given orally 1/day to sustain morphine dependence w/o withdrawal
	induction
	- Considered an effective public health measure but it's a long-term
	treatment w/ frequent relances as methodone doses reduced
	a aastulmethedel: Becently approved agent for use in treatment of herein
	- a-acceptimetination. Recently approved agent for use in treatment of nerolin
	abuse Cimilando mode to the term of internet internet internet of the second second
	- Similar to methadone but longer-acting; patients could come to clinic less
	often
Etorphine	- Structure / actions: Oripavine structure; highly potent, short-acting drug
	- Used as an immobilizing agent (veterinary practice)
	- Marketed as a package w/ its "own" antagonist, diprenorphine
Fontonyl	- Structurally related to phenylpiperidines (e.g. meperidine)
Fentanyi	- Produces strong analgesia, similar to morphine
VEDV	- Combined w/ a butyrophenone (Droperidol): Produces neurolept
VENI WIDELV	analgesia and can be used for major surgery w/o any other kinds of drugs
WIDEL Y	- Patches and Iollinons available for chronic nain and children's surgeries
USED	respectively
	Related compounds
	Sufortanil
	- Suleinanni - Alfantanik Illtra altart acting commany dam/ action register
	• Alfenianii. Olira-short-acting compound, w/ action rapidry
	erminated by metabolism
	• <i>Remijentanii</i> : Most widely used short-acting m agonist; rapid
	metabolism means administration requires an infusion pump
Apomorphine	- Similar chemical structure to morphine
	- Stimulates CTZ to induce N/V w/ little other narcotic-like effects
	- Investigational use as a dopamine-receptor stimulant
	- Use in treatment as an emetic
	- Emetic effect antagonized by narcotic antagonists (acoording to some
	"authorities")
"Weak" aganists	- Codeine
weak agonists	Structure: Morphine w/ methyl in 3 position; weak affinity for
Use in milder forms	m receptor
of pain	 High oral: parenteral potency ratio
1	 Low doses relieve cramps, earaches (in children) w/ relatively
	small risk of abuse
	 Striking CV effects occur w/ non-oral administration
	Porposumbono (Dorsion)
	• Structure: Similar to methodono
	- Suuciule, Similar to methadolle
	- Side effects: Similar to harcotics
	 High doses: Excitant effects culminate in convulsions w/
	respiratory depression
	 Slight risk of abuse, esp. considering wide use in medicine and
1	dentistry

Characteristics of pure narcotic antagonists (naloxone, naltrexone, nalmefene are prototypes)

Surmountable antagonists of the specific effects of narcotics (reduces potency of agonist)
 Little effect when given alone, showing that endogenous opiates are not very active under normal circumstances

- $\circ\,$ In narcotic-dependent patient, narcotic antagonist administration elicits a syndrome resembling narcotic withdrawal.
- Syndrome obtainable w/ very small doses of antagonists.
- Duration of action differentiates the three antagonists.
- Naloxone: Short duration of action; multiple doses may be required to control agonist overdose; should only be used to diagnose narcotic intoxication.
- o Naltrexone: Longer-acting; approved for treatment of alcoholism (unclear mechanism)
- Nalmefene: Slightly longer-acting than naltrexone
- When administered to normal, drug-free individuals, they are w/o effect except at very high doses.
- Use in diagnosis and treatment of overdose; suggested as diagnostic aid in methadone programs.
- All three antagonists more active in reducing m receptor effects than k receptor effects.

Char. of Morphine-like agonist/antagonists (Nalbuphine, butorphanol, dezocine, buprenorphine, tramadol)

Variable effects	- Partial agonist activity at m receptor
	- Can have other effects at other receptors
	 e.g. buprenorphine is competitive antagonist at k receptor
Agonist actions	- Respiratory depression is limited
_	- Analgesia is adequate, but may be limited as well
	- Pattern of adverse reaction is similar to Morphine
	- Subjective effects similar to Morphine, although limited (actions present
	in reduced form)
	- Reinforce self-administration behavior
Antagonist actions	- Precipitate withdrawal in Morphine-dependent patients
	- High dose effects of Morphine-like agonists are antagonized
Cardiovascular	Different: Not yet clear whether the differences are related to opioid
actions	receptor actions
Drug classification	Currently marketed compounds not classified under the Controlled
	Substances Act
	Exception: Buprenorphine

Kappa-receptor mediated agonist actions

- Analgesia
- Diuresis/water type
- Tolerance, dependence, but no cross-tolerance or cross-dependence w/ morphine
- Subjective effects that are "dysphoric"
- Fail to reinforce drug-taking behavior
- Absence of significant respiratory depression (kill animals by induced convulsions; unclear if these convulsions are receptor-mediated)
- All actions reversed by narcotic antagonists (w/ possible exception of convulsant action)

Char. of narcotic antagonists w/ Morphine-like agonist effects (nalorphine, cyclazocine, levalorphan)

- Some mixed agonists/antagonists have action at k receptor (pentazocine)
- Some produce nalorphine-like actions mediated at a k receptor CNS depression, analgesia, sedation, depression of respiration, and ataxia, along w/ dysphoria and hallucination
- Pharmacologic prototypes; not marketed
- Do not reinforce self-administration behavior
- CNS depressant effects cannot be antagonized by nalorphine, but can be blocked by large doses of naloxone (surmountable antagonist)
- Cross-tolerance develops for compounds that work at the k receptor, but not for those w/ morphinelike actions, suggesting that the receptors do not have any significant cross-talk w/ each other
- Physical dependence develops but not cross-dependence w/ m-like compounds.