Pathology of Cerebrovascular Disease

- Cerebrovascular disease 3rd most common cause of death most common of all CNS diseases
- Stroke = sudden and dramatic development of a focal neurological dificit due to a vascular impairment
 - 10% of all deaths in the U.S.
 - 500,000 new victims each year
 - mainly results from HTN, cerebral atherosclerosis, or both
- SYMPTOMS OF STROKE
 - 1. sudden weakness or numbness of the face, arm, or leg on one side of the body
 - 2. loss of speech, or difficulty in speaking or understanding speech
 - 3. dimness or loss of vision, in one eye
 - 4. unexplained dizziness
- TIAs = reversible focal neurological symptoms secondary to ischemia which last from several seconds to 24 hrs

ARTERIAL INFARCTION

Pathophysiology

- Chief causes: embolism and thrombosis
- Factors contributing to infarction
 - 1. Decreased O_2 in blood
 - reduced hemoglobin in blood
 - hypoxemia
 - 2. Decreased perfusion
 - cardiac arrest, hypoTN, shock, pulmonary embolism
 - venous stasis, CHF, Increased ICP
 - 3. Altered composition of blood
 - > polycythemia, thrombotic thrombocytopenic purpura
 - macroglobulinemia
 - > oral contraceptives, pregnancy, and puerperium
- Misc. causes of infarction
 - 1. Hypoglycemia
 - 2. Vasculitis
 - 3. Infection with local thrombosis or endarteritis obliterans
 - 4. Compression of vessels by tumors, aneurysm
- Major sources of emboli
 - 1. atria, valve, and mural
 - 2. aorta and Neck + vessels Ex. atheroma
 - 3. Peripheral vessels rare because of entry into right side of heart first.

Remember topographical features are determined by artery of supply

- Size and extent of infarcts influenced by:
 - 1. Site of the occlusion (the more proximal, the more extensive)
 - 2. presence and efficacy of collateral circulation
 - 3. rapidity of occlusion (the more rapid, the more extensive)
- Two main types of infarcts
 - 1. infarcts of end-arterial zones
 - 2. boundary zones (water-shed) infarcts

Classification of Infarcts

- I. According to type
 - ➤ anemic (Pale)
 - Hemorrhagic (red)

- II. According to site of involvement
 - cortical and subcortical
 - ➢ Cortical only
 - laminar necrosis
 - granular atrophy
 - ➢ White matter only − HTN etiology
 - Basal Ganglia

Remember

- Know distribution of Arteries!!
- MCA
 - ➢ has greatest volume of distribution
 - most common vessel thrombosed/occluded/embolized
- The larger the wedge-shaped infarcted area, the more proximal the emboli/thrombosis is.

EVOLUTION OF CEREBRAL INFARCTS

1 – 2 days	swelling, pallor, gray-white matter edema	manifests as Coagulation necrosis eosinophilic degeneration of neurons swelling of myelin and axons degradation of glia influx of neutrophils
3 – 5 days	MAXIMAL SWELLING, mushy and friable	influx of monocytes macs phagocytose necrotic tissue lipid-laden macs (Gitter cells) prominent capillaries (4-6 days) INCREASED ICP herniation common
2 weeks	liquefaction begins; necrotic debris begins to disappear	disintegration of necrotic tissue numerous Gitter cells meshwork of richly cellular C.T. many thickened capillaries hypertrophy and hyperplasia of astrocytes BARRIER FUNCTION
3 weeks	Hole forms (cavitation)	fewer Gitter cells in center prominent reactive changes at egde
Few months	Fluid-filled cavity	Fewer vessels dense glial scar at edge

Main stages in the evolution of Cerebral infarcts are:

Stage I: Coagulative necrosis (with edema)

- Ischemic cell change (eosinophilic neurons)
 - 1. nuclear pyknosis with cytoplasmic eosinophilia eosinophilic neurons
 - 2. pallor of nuclear and cytoplasmic nucleic acids ghost neurons
 - 3. shrinkage and condensation of the perikaryon dark neurons
 - 4. precipitation of formaldehyde pigment on the neuronal perikaryon incrustation
 - 5. neuronal scalloping
 - 6. neurorial vacuolation
 - 7. development of a perineuronal halo
- MICRO: molecular and sub-molecular layer intact

Stage II: Liquefaction (and phagocytosis)

Stage III: Cavitation (and shrinkage)

• cavitation probably results because astrocytes can't grow on a dead substrate

SELECTIVE VULNERABILITY TO ISCHEMIA

• various components of the brain react in different ways to the same ischemic injury

Following HypoTN or Cardiac Arrest the most vulnerable sites are:

- 1. distal arterial territories ("water-shed")
 - major and abrupt fall in systemic BP arterial-border-zone pattern of injury
 - slow onset HypoTN for a prolonged duration generalized and continuous ribbon of cortical necrosis Laminar necrosis
- 2. hippocampus
- 3. cerebellar cortex
- 4. Cortical layers 3,5,6 are more susceptible than 1,2, & 4.
- 5. laminar necrosis occurs in zones 2-6 (1 is spared)

<u>Neurons</u> are more vulnerable to ischemia than <u>oligodendrocytes</u> <u>Oligodendrocytes</u> are more vulnerable to ischemia than <u>astrocytes</u>

OTHER ISCHEMIC LESIONS

Spinal Cord Infarction

- T4 and L1 are the most vulnerable spinal cord areas
- are arterial border zones
- Causes
 - 1. aortic atherosclerosis
 - 2. chronic HypoTN (elderly patients)
 - 3. dissecting aneurysms
 - 4. after surgical repair of aortic aneurysms

CEREBRAL AND/OR MENINGEAL HEMORRHAGE

3 main non-traumatic causes: HTN, Vascular malformation, Blood dyscrasias

Hypertension

- causes vascular changes
- most important etiological factor in infarction and hemorrhage
- accentuates atherosclerosis of the large arteries
- alters the wall of the arterioles in the following ways:
 - 1. Hyaline degeneration
 - 2. Fibrinoid necrosis

3. Charcot-Bouchard aneurysm

- > most frequently found in the small arteries of the basal ganglia
- changes lead to hemorrhage
- 4. Thrombotic obliteration of altered vessels
- **5** Sites of HTN hemorrhage
- 1. Putamen
- 2. cerebral hemispheric white matter
- 3. thalamus
- 4. pons
- 5. cerebellar white matter
 - the location and relative incidence of HTN hemorrhages is in accord with the distribution of Charcot-Brouchard aneurysms
- Complications of HTN: rupture into ventricles or through cortex into leptomeninges

Other HTN lesions

Lacunar Infarcts

- defined by their size
- caused by rupture of Charcot-Bouchard aneurysms
- most frequent in basal ganglia and basal pons

Binwanger's disease (subcortical arteriosclerotic encephalopathy)

- clinical picture
 - ➢ persistent HTN
 - systemic vascular disease
 - history of acute strokes
 - multifocal neurological symptoms
 - long latent periods
 - lengthy clinical course
 - ➢ dementia
 - ventricular dilatation
- Pathological findings
 - diffuse degenration of white matter associated with multiple infarcts
- Numerous white matter lesions seen on the MRI of a demented patient w/ HTN should suggest Binswanger's disease
- due to resetting of the pressure monitor

Hypertensive encephalopathy

- presents with alterations of cansciousness and severe headaches
- Pathological findings
 - fibrinoid necrosis of arterioles
 - ➤ edema
- Failure of vascular autoregulation and forced opening of the BBB by sudden or prolonged HTN
- Remember: autoregulation is maintained from 45-170 mmHg normally

Hemorrhages due to vascular malformations

Intracranial arterial aneurysms

Saccular or "berry" aneurysms

- clinically most relevant
- Pathogenesis
 - medial muscular defect (congenital)
 - degeneration due to hemodynamic stress
- Rupture in 65% with subarachnoid and intracerebral hemorrhage
- "The worst headache of my life!"
- MAY FORM MASS DON'T BIOPSY
- may be further complicates by arterial spasm which may lead to thrombotic infarction
- treat these patients with Ca²⁺ CHANNEL BLOCKERS prophalactically
 - most common locations of saccular aneurysms
 - 1. anterior communicating artery (30%)
 - 2. middle cerebral artery (30%)
 - 3. internal carotid artery and its branches (35%)
 - 4. basilar artery bifurcation and vertebral artery (5%)

Other types of arterial aneurysms include: atherosclerotic, Charcot-Bouchard, infectious, posttraumatic, neoplastic, and dissecting

Arteriovenous Malformation (AVM)

- large vascular spaces with intervening brain
- most common of all the vascular congenital abnormalities in neurosurgical specimens
- clinical manifestations
 - 1. hemorrhagic stroke
 - 2. convulsions
- more than 90% supratentorial
- 10% of subarachnoid hemorrhages are caused by AVMs •

Venous Angiomas

•

Cavernous angiomas

- veins are back-to-back
- no intervening brain
- slower flow of blood and become calcified and thrombosed •

Capillary talangiectases

PERINATAL CEREBROVASCULAR DISEASES

Germinal Matrix Hemorrhage

- thin-walled capillaries in the germinal matrix rupture and extend into the lateral ventricles •
- Graded radiologically (ultrasound) on a four grade system
 - Grade 1: rupture into the germinal matrix, no extension into the ventricles CERBRAL PALSY \triangleright
 - \geq Grade 2: extension into the ventricle, no cast formation of the ventricle – CERBRAL PALSY
 - > Grade 3: extension into the ventricle, ventricular cast formation hydrocephalus and death
 - Grade 4: Grade 3 + extension into the white matter hydrocephalus and death
- occurs in the perinatal period ٠
- usually with: concurrent prematurity, acidosis, increased ICP, or hypoxemia.